
DRAFT Simon St.Laurent 2/21/2005

Licensed under Creative Commons Attribution-NonCommercial-NoDerivs 2.0 license.
http://creativecommons.org/licenses/by-nc-nd/2.0/

1
Getting Started

You have a Pocket PC device, and it's hooked up to your Windows-based computer.
ActiveSync works, you've found your way around the interface of the device, and you'd
like to put something on that screen that reflects your own ideas. It's time to fire up some
development tools and put your own stamp on the machine.

Visual Studio .NET
For the first release of the .NET Compact Framework, you're stuck using Visual Studio
.NET as your development environment. SharpDevelop, the Mono tools, or even
command-line compilation might seem more appealing, but Microsoft hasn't provided
any other choices for now. (They've talked about doing so in future releases.) Even
buying Visual C#.NET or Visual Basic.NET won't help - these $99 packages don't
include the .NET Compact Framework parts you need. You need Visual Studio .NET
2003 Professional Edition, a roughly $500 proposition if you have either some Microsoft
or competing software from which to upgrade. Otherwise, it's more like $700.

It could be worse - they could have required the Enterprise Edition,
which is $1500 and up.

Your likely first step in programming for your Pocket PC, should you choose to go the
.NET Compact Framework route, is to spend as much as you paid for the Pocket PC on
software that will let you write programs for it. Microsoft does offer a 60-day trial
version of Visual Studio .NET, or you could be very brave and try the "Community
Edition" betas of the next version of Visual Studio .NET. Unfortunately the free Express
Editions also lack .NET Compact Framework support. At this point, it looks like
Microsoft really wants you to pay them to develop software that will run on their devices.

If you don't want to send your money to Redmond, there are a few
other options. A version of Python that runs on Pocket PC is available
from http://www.murkworks.com/Research/Python/PocketPCPython/.

2 Getting Started

2

PocketC, which is based on C but not ANSI-standard C, is at
http://www.orbworks.com/wince/index.html, SuperWaba (which uses
Java) at http://www.superwaba.com.br/, and even a version of Scheme
at http://www.mazama.net/scheme/pscheme.htm. Undoubtedly there
are more out there, and more will appear over time. If you felt
especially strongly, you could run Linux on your Pocket PC, and get an
even wider set of choices. All of these environments have pluses and
minuses, one consistent minus being that they're not covered in this
book. Is that a minus for them or for this book? You'll have to decide
that for yourself.

Once you've purchased Visual Studio .NET, or received your 60-day trial, you'll get to
spend a while installing it. You should budget a substantial amount of space on your
hard drive, as well as a fair amount of time to watch the install program slowly crunch
by. Finally, when you have Visual Studio .NET installed, you probably want to
download one extra item: the Pocket PC 2003 SDK and emulator, which you can find at
http://msdn.microsoft.com/mobility/downloads/sdks/default.aspx. Fortunately, Microsoft
doesn't want to charge you for that piece. Now that you've done all that, it's time to
create your first - and very simple - program for the Pocket PC.

Creating a program without writing code
You can't get very far in .NET Compact Framework development without writing some
code, but you can create an initial demonstration that shows you how to create a project
and deploy it to your Pocket PC. To get started, fire up Visual Studio and create a new
project. You can go to File > New > Project..., click New Project on the Start Page, or
press Ctrl-Shift-N. It doesn't matter. You'll see the dialog shown in Figure 1-1.

Figure 1-1. The New Project dialog box.

For the project we'll be creating, you'll want Smart Device Application from the Visual
Basic templates. Enter a name for your project, choose where you want it saved, and
click OK. Next, Visual Studio will ask you more precisely which platform you're
targeting, as shown in Figure 1-2.

Creating a program without writing code 3 of 17

 3

Figure 1-2. The Smart Device Application Wizard.

Your list of installed devices may vary, but for now we want the default choices of
"Pocket PC" and "Windows Application", so you can just click OK. Visual Studio will
churn for a few moments, and then present the empty form and surrounding context
shown in Figure 1-3. (If the Toolbox is missing, click the hammer and wrench icon at the
left of the window and then click its pushpin icon to lock it in place.)

Figure 1-3. Visual Studio at the beginning of a Pocket PC project.

The heart of the application, the Form that we're going to create and display, is at the
center of the screen. Controls are on the left. You can drag-and-drop controls from the
left onto the form, or you can click on a control name and then draw it on the form.
Below the form itself is a menu class.

If a Pocket PC application doesn't have a menu class, users can't get to
the Software Input Panel (SIP), otherwise known as the on-screen
keyboard/block recognizer/letter recognizer. For some applications,

4 Getting Started

4

where you know the Pocket PC has a keyboard (like my iPaq 4350), or
where users only provide input through buttons, this is probably fine,
but most of the time you'll want at least the blank menu to give users a
bit more freedom in choosing their devices and entering data.

Properties are listed on the right-hand side of the screen. You can select a property and
edit its value, and the property list changes depending on which item or items are selected
on the form itself. (If the Properties Window or any of the other windows are missing,
visit the View menu to bring them back.) For this particular application, all you need to
do is put a label on the form and set its text to whatever you like.

That's a little trickier than it probably seems. Unlike sane applications, say Microsoft's
own Access, Visual Studio demands that you use the properties to change the content of
the label. Don't double-click on it, or you'll find yourself in a code window that lets you
adjust the code behind the label rather than the text of the label. So put the label on the
form, and then look for the Text property in the Properties Window at the right of the
screen. Enter whatever value you want in there.

If you double-click on the label, you'll open the code window for the
label. If you hit Alt-F-C, thinking that will close the window, you'll be
disappointed - Visual Studio will close the project instead! Be cautious
when editing forms. Eventually you'll train yourself to Visual Studio's
expectations and maybe things will make more sense.

We'll do one more thing for this application, to let it explicitly quit. Microsoft expects
Pocket PC applications to be instantly available to the user once they've started running,
so quitting isn't normal behavior for a Pocket PC program. As this application doesn't
really have much to offer, it's probably smarter (and easier for debugging) to have it offer
a proper quit option rather than hanging around. To do that, click on the form outside of
the label, and look for the MinimizeBox property. Set it to false, and then save the
project. Your screen should look something like Figure 1-4.

Figure 1-4. Visual Studio project after a bit of fiddling.

Creating a program without writing code 5 of 17

 5

It isn't glorious, but it's a base to work from. Now it's time to make this work. Press the
F5 button. The window at the bottom center will turn to an Output window, showing you
the results of your code (well, code Visual Studio created for you) compiling and
building. Then you'll get the question shown in Figure 1-5: on what device do you want
to see this?

Figure 1-5. Choosing a deployment environment.

If you choose Pocket PC 2003 Emulator and click the Deploy button, you'll see more
activity in the Output window, and then you'll see Figure 1-6, or something similar.

Figure 1-6. Our super-simple application deployed on the Pocket PC
emulator.

Even in this really simple example, there are a few key things to note here. Along the top
of the window, we see "Form1", the name of the form. You'll probably want to change
this label to something more exciting. The OK button in the top right isn't the usual X,
because we set MinimizeBox to false. The X would mean minimize, whereas OK
actually dismisses the form. Dismissing the only form of a one-form application
conveniently exits the application. The text we put in our label is there, so there's at least
some contribution on our part. At the bottom, you can see the little keyboard icon that
means that the SIP is available to users, if not particularly necessary for this application.

When you get tired of admiring this simple creation, click the OK button with your
mouse. (In general, the mouse pointer behaves in the emulator as your stylus.) The
emulator will remain up, showing the Today page, but Visual Studio knows that the fun
is over, as shown in this Output Window listing:

6 Getting Started

6

'MyFirstFormVB.exe': Loaded 'C:\Documents and Settings\Simon\My
Documents\Visual Studio Projects\MyFirstFormVB\bin\Debug\mscorlib.dll',
No symbols loaded.
'MyFirstFormVB.exe': Loaded 'C:\Documents and Settings\Simon\My
Documents\Visual Studio Projects\MyFirstFormVB\bin\Debug\MyFirstFormVB.exe',
Symbols loaded.
'MyFirstFormVB.exe': Loaded 'C:\Documents and Settings\Simon\My
Documents\Visual Studio Projects\MyFirstFormVB\bin\Debug\System.Drawing.dll',
No symbols loaded.
'MyFirstFormVB.exe': Loaded 'C:\Documents and Settings\Simon\My
Documents\Visual Studio Projects\MyFirstFormVB\bin\Debug\System.dll',
No symbols loaded.
'MyFirstFormVB.exe': Loaded 'C:\Documents and Settings\Simon\My
Documents\Visual Studio Projects\MyFirstFormVB\bin\Debug\System.Windows.Forms.dll',
No symbols loaded.
The program '[3668] rundll32.exe: MyFirstFormVB.exe' has exited with code 0 (0x0).

For a more exciting time, you can run the same application on your own Pocket PC. Put
it in the docking cradle, let ActiveSync do it's thing, and then hit F5 again. Instead of
choosing the emulator from the list shown in Figure 1-5, choose Pocket PC Device. The
results should be very similar, except that they happen on the device itself. The output
window should look the same as it did.

Emulators and Devices
Now that we've used an emulator and a device (assuming you have a device), it's
probably worth pausing to look at what exactly is going on here and how reliable you can
expect the emulator to be. I'm can't claim to be an old hand at Windows CE
development, but my understanding is that the old emulators weren't much fun, and
connected calls to regular Windows APIs, so things might work in an emulator but not on
a device or vice-versa. Things are better now, but it's still worth considering some of the
issues that arise because of developing with emulators and because of variations among
devices.

Emulator Issues
Whether you're working with an emulator or with a device, Visual Studio .NET
communicates with the program you're running for debugging purposes. From the
programmer's perspective, they produce the same results in the output window. There are
some differences to keep in mind, however:

• I/O devices will likely be very different. My iPaq 4350 has Bluetooth built into it,
while the Pocket PC 2003 emulator doesn't.

• Network connectivity may be different or variable. A Pocket PC using wireless that
loses reception as the user walks around will present a very different network
experience than you get in an emulator on a PC using reliable Ethernet for its
connection.

• Most users won't have keyboards. A text-entry application may feel fine to you in
the emulator, but may not be as appreciated by users on Pocket PCs in the field
working on tiny keyboards or through the SIP.

• Patterns of use are different. The click-and-hold that the Pocket PC uses instead of a
right-click may produce some different behavior as shaky users wobble their stylus

Emulators and Devices 7 of 17

 7

more on a selection than a programmer testing an app moves their mouse. Pocket
PCs in the field are likely to get more intermittent use than emulators on a desktop
being tested.

In general, the emulator will work well, but you'll want to test your applications on
devices in real-life situations in addition to testing them on the emulator.

You can run the emulator without running Visual Studio, if you want to
show your friends how snappy the interface is, or programs you've built
for the Pocket PC in previous sessions. In a typical installation, the
emulator is at C:\Program Files\Microsoft Visual
Studio .NET 2003\CompactFrameworkSDK\Connectio
nManager\Bin\emulator.exe. You can run it with the /help
option to learn more about the options it supports. You'll need to
specify the /CEImage option to make it run, and the image files
representing different versions of Windows CE are all in the Images
directory.

Device Variations
While most people think "Pocket PC" these days when Windows CE (sometimes
expanded to "Compact Edition," though not by Microsoft, and sometimes disparagingly
referred to as "wince") comes up, there are a lot of variations in the Windows CE family.
They aren't all Pocket PCs, and there's even some variation among Pocket PCs.

I'm still sad about my IBM WorkPad z50, a tiny ThinkPad-like computer that ran
Windows CE 2.11. It weighed 2.6 pounds, had a VGA screen, 48MB of RAM, and could
take a 32MB Compact Flash card. With PocketWord, it seemed like the perfect
lightweight answer to my note-taking needs, and it even had a VGA output, so I could
use it for presentations. I bought it used for $100, and unfortunately it proved to be for
sale for a reason: it reset itself periodically, erasing everything on it at inconvenient
times. Even when it didn't reset itself, it frequently slowed down to accept about one
keystroke per second. Its form factor, the traditional laptop clamshell, hasn't been
popular among Windows CE vendors, and sadly IBM hasn't tried again with anything
similar.

Today, most Windows CE devices that aren't Pocket PCs are custom devices. Windows
CE gives vendors a lot of flexibility to install or not install different parts of the operating
system, so it can lurk underneath buttons and an LCD display as well as underneath a
VGA display with a touchscreen. A lot of barcode scanners use Windows CE, as do
many electronic readout tools, and you can certainly build Windows CE devices into
things like cars.

Pocket PC is a specific profile of Windows CE. Vendors have to provide a core set of
functionality, as well as a basic set of buttons and a touchscreen. Programs written
explicitly for Pocket PC should be able to run on a variety of Pocket PCs, whether they
came from Dell, HP, Samsung, or someone else. (Not all Pocket PCs are slim enough to
fit in an ordinary pocket. As I was writing this, a Schwann's truck came and delivered
some frozen pizza. Their driver uses a big Pocket PC device and a Bluetooth printer to
handle inventory, credit cards, and receipts.)

There have been a number of steps in Pocket PC evolution. Only the more recent steps
support the .NET Compact Framework:

8 Getting Started

8

Handheld PC
These had bigger screens and often keyboards (like my z50), but the .NET Compact
Framework doesn't support these.

Pocket PC 2000
The original Pocket PC operating system shipped on a number of different
microprocessors. (If you wonder why Visual Studio produces so many different
output files, this and continuing support for Windows CE more broadly are why.)
The .NET Compact Framework does support these devices, though you'll need to
install the framework in addition to your application.

Pocket PC 2002
This version only runs on ARM processors, and is supported by the .NET Compact
Framework.

Pocket PC 2002 Phone edition
The .NET Compact Framework runs on these devices, but without any built-in
support for their telephone capabilities.

Pocket PC 2003
This version, the most common as I'm writing, includes the .NET Compact
Framework in ROM, so you don't need to install that to the device. The Second
Edition adds VGA-resolution screens and horizontal operation, though I don't think
the .NET Compact Framework supports that directly.

Windows Mobile Smartphone 2003
Cell phones have even fewer interface options than Pocket PCs, as they generally
lack touchscreens. To support these devices, Microsoft developed a version of
Windows CE that works with their limitations, and the 2003 version of that supports
a subset of .NET Compact Framework functionality.

I've seen rumors of more versions that will appear in the near future, but hopefully these
devices will continue to run the .NET Compact Framework in some available version for
a long time to come. You can also run .NET Compact Framework applications on
devices running Windows CE 4.1 or later.

You should be aware that most vendors don't provide operating system
upgrades for Pocket PCs. These devices seem to be regarded as
disposable, and somehow the notion of consumers shelling out
additional money on a regular basis appeals to the industry. On the
other hand, you definitely should visit your vendor's website to see if
there are any updates to the Flash ROM of your device. Updating the
Flash ROM of my iPaq didn't solve an annoying wireless issue for me,
but it did make it a lot more stable.

So what is the .NET Compact Framework?
We've now created an application that uses it, and looked over a list of devices that
support it, but what is this thing?

The .NET Compact Framework is closely related to Microsoft's .NET Framework, which
includes a number of components:

So what is the .NET Compact Framework? 9 of 17

 9

VB.NET, C# and some other languages
.NET is designed to support a number of languages which produce managed code,
and to connect them to code that isn't managed. As part of this process, Microsoft
developed both some new languages and extensions for older languages. In the
.NET Compact Framework, you'll only use VB.NET or C# in your code (and you
can mix them if you like), though you can connect to DLLs written in other
languages.

Common Language Specification and Common Type System
These aspects of .NET make it possible for different languages to work with the
same objects and with each other.

Common Intermediate Language (IL)
Instead of being compiled to machine code, .NET programs are compiled to
bytecodes. This sounds like a nuisance, but it has portability and security
advantages.

Common Language Runtime (CLR)
The CLR is the environment which runs the programs, compiling the bytecode to
machine code, and managing objects and memory allocation and deallocation. If
you're a Java programmer, you can think of this as similar to the Java Virtual
Machine (JVM).

Common Language Infrastructure (CLI)
This is a set of libraries which Microsoft included in its ECMA standardization
process, and which can be used to create a .NET-compatible environment. It does
not, however, include all of the .NET Framework or the .NET Compact Framework.

Because Microsoft chose to go through a standards body
(http://www.ecma-international.org/) in creating .NET, other people
can create .NET-compatible environments. Microsoft created Rotor
(http://msdn.microsoft.com/net/sscli/), an implementation for FreeBSD
and Mac OS X. Outside of Microsoft, Ximian, now part of Novell,
created Mono (http://www.mono-project.com/), which runs on Linux
and Windows.

The .NET Compact Framework builds on these foundations, but its focus on smaller
devices meant a fair amount of rewriting from the ground up, especially in the supporting
libraries. Microsoft chopped out a huge amount of supporting code, trimming 25MB of
the regular framework into 2MB in the compact version. Along the way, many properties
and methods disappeared, though there are still some annoying echoes left in the API,
properties and calls which still exist but don't actually do anything on a number of
objects. You'll also find you have to manage a lot of interface issues yourself rather than
expecting them to be taken care of for you, and that a lot of interface components do less
than you'd expect of their desktop counterparts.

Microsoft also rewrote a lot of functionality so that it makes more sense in an
environment driven by a touchscreen. Using a blank menu to expose the SIP, as we did
in the example above, is one example of this, as is the use of the MinimizeButton
property. To better integrate Pocket PCs with their SQL Server systems, they also wrote
a local database system that can work while the Pocket PC is disconnected from a
network and then resychronize when it comes back to the network.

If you're feeling brave, or just prefer C and C++, you can write applications for the
Pocket PC using those languages and the Win32 API. You'll be in direct contact with the

10 Getting Started

10

pulsing heart of the machine, and won't have to hope that Microsoft wrote .NET-specific
support for what you want to accomplish. Even .NET Compact Framework developers
may occasionally have to come in contact with the Win32 API, though in general you'll
create (or find, or buy) wrappers to let you stay in .NET as much as possible.

Looking at the code
But there wasn't any code in the example, right? Well, not quite. Visual Studio .NET
wrote a fair amount of code to make that work. Some was code that arrived by default to
put that form up on the screen, and some was connected to the label on the form. The
Designer part of Visual Studio lets you write code - simple code - by dragging and
dropping pieces from the Toolbox and setting their properties. To see this code, right-
click on the form, and select View Code. All of the 'real' code is hidden, but if you click
the plus sign on the left, you'll see code that looks like Example 1-1.

Public Class Form1
 Inherits System.Windows.Forms.Form
 Friend WithEvents Label1 As System.Windows.Forms.Label
 Friend WithEvents MainMenu1 As System.Windows.Forms.MainMenu

#Region " Windows Form Designer generated code "

 Public Sub New()
 MyBase.New()

 'This call is required by the Windows Form Designer.
 InitializeComponent()

 'Add any initialization after the InitializeComponent() call

 End Sub

 'Form overrides dispose to clean up the component list.
 Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)
 MyBase.Dispose(disposing)
 End Sub

 'NOTE: The following procedure is required by the Windows Form Designer
 'It can be modified using the Windows Form Designer.
 'Do not modify it using the code editor.
 Private Sub InitializeComponent()
 Me.MainMenu1 = New System.Windows.Forms.MainMenu
 Me.Label1 = New System.Windows.Forms.Label
 '
 'Label1
 '
 Me.Label1.Location = New System.Drawing.Point(8, 8)
 Me.Label1.Size = New System.Drawing.Size(216, 80)
 Me.Label1.Text = "$500 of development software, and this " & _
 "is what I've managed to create. Oh, wait " & _
 "- this is a 60-day free trial. Much better!"
 '
 'Form1
 '
 Me.Controls.Add(Me.Label1)
 Me.Menu = Me.MainMenu1
 Me.Text = "Form1"

Looking at the code 11 of 17

 11

 End Sub

#End Region

End Class

Example 1-1. The code Visual Studio created to display a form with a label.

This code creates three objects of three different classes. The first, Form1, inherits from
the Form class, fully identified as a System.Windows.Forms.Form class.
Inheritance means that the Form1 class has all of the functionality of
System.Windows.Forms.Form, but also has some functionality of its own. In this
case, that functionality adds a Label and a MainMenu to the Form when the Form is
created.

The Label and the MainMenu are declared near the top of the code for the Form1
class:

 Friend WithEvents Label1 As System.Windows.Forms.Label
 Friend WithEvents MainMenu1 As System.Windows.Forms.MainMenu

The Label1 object will be of the System.Windows.Forms.Label class, and the
MainMenu1 object will be of the System.Windows.Forms.MainMenu class.
We're not doing anything complicated enough with these objects for it to be worth
creating a new class that inherits from those objects - their default behaviors are fine.
Our program just needs to get those objects and set some properties on them. The
Friend part means that these objects are available to any other program in the same
assembly (something we'll get to later), and WithEvents means that these objects can
raise events. We'll be able to have users interact with them and process those interactions
from the form.

The next line is a warning that code placed here is subject to change by the Windows
Form Designer, the interface we used to lay out the form's controls:

#Region " Windows Form Designer generated code "

Everything from this line to:
#End Region

may get erased if you make changes in the Designer. There's one spot in the next
subroutine where you can safely make changes, however.

 Public Sub New()
 MyBase.New()

 'This call is required by the Windows Form Designer.
 InitializeComponent()

 'Add any initialization after the InitializeComponent() call

 End Sub

The first line here, MyBase.New(), calls the New() method of the base class for the
form, which is System.Windows.Forms.Form in this case. The New() method
will set up a blank form that this class can use as its foundation. (The MyBase keyword
always refers to the class from which this class inherits.) The next call is to
InitializeComponent(), which we'll see in a minute. Don't make any changes

12 Getting Started

12

here until you get past the next comment. (Lines starting with a single quote in VB.NET
are comments, and don't get compiled.)

 'Add any initialization after the InitializeComponent() call

If your form needs initialization separate from the laying out of controls that the Designer
will do for you automatically, you can add your code after this comment and the Designer
won't obliterate it. We'll do this later.

In addition to the initialization code, there is also some code for cleaning up at the end of
the form's lifetime:

 'Form overrides dispose to clean up the component list.
 Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)
 MyBase.Dispose(disposing)
 End Sub

This method is Protected, so that only other code which inherits from this class has access
to it. The Overloads keyword marks it as providing a variant using different argument
types than another function with the same name. It's not clear to me why that is necessary
here, as it calls the same function of the parent class with the same type of argument. The
Overrides keyword marks it as replacing code in its parent class, though since all this
method does is call the same method for its parent class, it's not clear why this keyword
needs to be here at all. Deleting it, however, makes Visual Studio complain during the
build:

sub 'Dispose' cannot be declared 'Overrides' because it does not
override a sub in a base class.
sub 'Dispose' shadows an overloadable member declared in the base
class 'Control'. If you want to overload the base method, this
method must be declared 'Overloads'.

You can insert code above the call to MyBase.Dispose (disposing) without the
Designer replacing it, though in my tests (with MsgBox, admittedly) it didn't seem to do
anything when I ran it.

The next method contains lots of simple but interesting code, but it's code you should
read and never change. This code is completely generated by the Designer, and reflects
controls that have been placed on the form and their properties. The warning at the
beginning is real; you should treat this as read-only code.

 'NOTE: The following procedure is required by the Windows Form Designer
 'It can be modified using the Windows Form Designer.
 'Do not modify it using the code editor.
 Private Sub InitializeComponent()
 Me.MainMenu1 = New System.Windows.Forms.MainMenu
 Me.Label1 = New System.Windows.Forms.Label
 '
 'Label1
 '
 Me.Label1.Location = New System.Drawing.Point(8, 8)
 Me.Label1.Size = New System.Drawing.Size(216, 80)
 Me.Label1.Text = "$500 of development software, and this " & _
 "is what I've managed to create. Oh, wait " & _
 "- this is a 60-day free trial. Much better!"
 '
 'Form1
 '
 Me.Controls.Add(Me.Label1)

How This Application Runs 13 of 17

 13

 Me.Menu = Me.MainMenu1
 Me.Text = "Form1"

 End Sub

It creates a menu control, MainMenu1, which it leaves empty. It creates a label control,
Label1, assigns it a location and a size, and then provides text. Once it's configured,
this routine adds the label control to its collection of controls. Then it adds the menu
control, which even though it's empty will result in the SIP being available for input.
Finally, it sets the name of the form, which will appear in the top left of the screen, to
"Form1".

You should refrain from changing any of the code here, as it will just get overwritten, but
there's still plenty to learn here. If you want to create forms by hand, these are the parts
you'll need, and you can also create things like panels which contain controls using the
same code - but not necessarily the Designer.

How This Application Runs
All of that code is interesting, but there's no actual entry point. How does the Pocket PC
or emulator know where to begin in the code?

In C#, programs include an explicit Main() method that fires up the program. In
VB.NET, the starting form for the program is set in the properties for the project, which
you can find in the Project menu at its very bottom. The Properties window, shown in
Figure 1-7, will appear.

Figure 1-7. The Properties window for a VB.NET Compact Framework
Project.

The startup object, to the right side of the middle row of form fields, is where your
program will start. If you want to use a different form to start, or even if you just change
the name of your form, you'll need to change the Startup object here. If you don't, you'll
get build errors like:

'Sub Main' was not found in 'MyFirstFormVB.Form1'.

14 Getting Started

14

When the program ran above, the compiled code included a reference to Form1. The
.NET environment created a new instance of Form1, which displayed the form on the
screen. Because there isn't much you can do with this app, it waited until the user clicked
on the X in the top right corner and then closed the form. Closing the base form for the
program will exit the program completely.

.NET Compact Frameworks must have a base form and other forms.
It's a change from ordinary Windows (or other GUI) applications,
where you might open the program, create a new window for a
different document, and close the original window while still working
in the new window. This requirement (and the .NET Compact
Framework's limited built-in form management capabilities) will
require you to structure and manage your applications carefully.

Adding Some Action
We've gone a long way in doing very little, but it's time to take the next big step and give
this application some interactive capabilities beyond presenting a form and waiting for
the user to close the form. Our first step will still be pretty small, but it will give you a
basic idea of how to process events and respond to them in the .NET Compact
Framework environment. We'll add a TextBox for user input and two buttons. One
button will display the user input in a message box, and the other will change the content
of the label to match what the user put into the TextBox. (It's not very exciting, I know,
but starting small has its own virtues.)

Drag a TextBox from the Toolbox and put it on the form so it looks roughly like Figure
1-8. Change its name property from TextBox1 to UserInput, and make it stretch
across the form. You can change other properties if you want to make it look more
interesting, but the name is the important part for the purposes of the code. The
TextBox will give users a place to enter information, but the actual processing of that
information will be handled by code in the buttons.

Figure 1-8. Form with TextBox added.

Adding Some Action 15 of 17

 15

To add the first button, drag a button from the toolbar to the form and change its Label
property to "Display as Message" (you'll probably want to widen the button) and its
Name property to AsMessage. Then drag a second button to the form and change its
Label property to "Display as Label" and its Name property to AsLabel. You should
end up with something that looks like Figure 1-9.

Figure 1-9. Form with buttons.

Next we'll add some logic to those buttons so that they actually do something. Double
click on the "Display As Message" button to bring up its code window. You'll find
yourself in the code for the Form which we saw above, with the cursor in the middle of
this new subroutine at the end:

Private Sub AsMessage_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles AsMessage.Click

End Sub

Visual Studio .NET has written the framework your event handler is required to have. For
processing a click you're not going to worry about the sender (where the event came
from) or the e value with its additional arguments about the event, but you'll need those
in later more complex event processing. It also notes that this bit of code Handles
AsMessage.Click, which tells the .NET Compact Framework that this code should
get called whenever a user clicks on the button named AsMessage.Click.

If you look through the rest of the code in the Form1 class, you'll also
find declarations and initializations for the components you just added.
The only thing you need to change to make the button do work,
however, is in the events.

This button should display a message box containing the contents of the UserInput
text field when the user clicks on it. Inserting this code into that AsMessage_Click
subroutine will do just that:

MsgBox("You typed: " + UserInput.Text)

16 Getting Started

16

For the AsLabel button, we'll do exactly the same thing except that instead of using a
message box we'll change the Text property of Label1:

Label1.Text = UserInput.Text

Now we have an application which will actually let the user do something, though that
something is still pretty meaningless. Fire up the application and debugging by pressing
F5 and selecting the Pocket PC 2003 emulator. You'll see something like Figure 1-10.

Figure 1-10. The Pocket PC application's initial state.

It's not precisely beautiful, but we'll get there. For now, what matters is that you can
click on the text box under the label and type whatever you like into it. When you're
content with what you've typed, you can click one of the buttons and have your typing
reflected in either a message box or in a change to the text of the label. (It's a bit unusual
to have user input change the interface itself, but the technique may be useful in other
contexts as well. For example, if you type "I think this application is picking on
Microsoft too much." and click on the Display As Message button, you'll see a message
box like that in Figure 1-11.

Figure 1-11. A message box displayed by the application.

To dismiss the message box, click on the ok button in its top right corner. For our next
demonstration, we'll change the label to something more Microsoft-friendly. Type

Adding Some Action 17 of 17

 17

"Visual Studio .NET wrote most of the code for this application, but it generously let me
add some of my own logic to it." and then click on the Display As Label button. The
application will then convey a very different attitude, as shown in Figure 1-12.

Figure 1-12. A changed label with a changed attitude.

Undoubtedly you'll want to do a lot more going forward, but this is a start. We've built a
simple interface, wired up a few events, and created an application which lets the user do
something, if not very much.

If you ever screw up the windows in Visual Studio .NET and don't
think you'll ever get it back to sane, go to the Options... item on the
Tools menu and click "Reset Window Layout".

This chapter is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 2.0 license. (http://creativecommons.org/licenses/by-
nc-nd/2.0/)

